Translation in s

Theorem 3. If the Laplace transform $\mathcal{L}\{f\}(s) = F(s)$ exists for $s > \alpha$, then

(1)
$$\mathscr{L}\left\{e^{at}f(t)\right\}(s) = F(s-a)$$

for $s > \alpha + a$.

What does this mean?

Translation in s

Theorem 3. If the Laplace transform $\mathcal{L}\{f\}(s) = F(s)$ exists for $s > \alpha$, then

(1)
$$\mathscr{L}\left\{e^{at}f(t)\right\}(s) = F(s-a)$$

for $s > \alpha + a$.

Proof:

Example 1 Determine the Laplace transform of $e^{at} \sin bt$.

Laplace Transform of the Derivative

Theorem 4. Let f(t) be continuous on $[0, \infty)$ and f'(t) be piecewise continuous on $[0, \infty)$, with both of exponential order α . Then, for $s > \alpha$,

(2)
$$\mathscr{L}{f'}(s) = s\mathscr{L}{f}(s) - f(0).$$

What does this mean?

Laplace Transform of the Derivative

Theorem 4. Let f(t) be continuous on $[0, \infty)$ and f'(t) be piecewise continuous on $[0, \infty)$, with both of exponential order α . Then, for $s > \alpha$,

(2)
$$\mathscr{L}{f'}(s) = s\mathscr{L}{f}(s) - f(0).$$

Proof:

Laplace Transform of Higher-Order Derivatives

Theorem 5. Let $f(t), f'(t), \ldots, f^{(n-1)}(t)$ be continuous on $[0, \infty)$ and let $f^{(n)}(t)$ be piecewise continuous on $[0, \infty)$, with all these functions of exponential order α . Then, for $s > \alpha$,

(4)
$$\mathscr{L}\lbrace f^{(n)}\rbrace(s) = s^{n}\mathscr{L}\lbrace f\rbrace(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0) .$$

Illustrate for n = 2

Laplace Transform of Higher-Order Derivatives

Theorem 5. Let $f(t), f'(t), \ldots, f^{(n-1)}(t)$ be continuous on $[0, \infty)$ and let $f^{(n)}(t)$ be piecewise continuous on $[0, \infty)$, with all these functions of exponential order α . Then, for $s > \alpha$,

(4)
$$\mathscr{L}\lbrace f^{(n)}\rbrace(s) = s^{n}\mathscr{L}\lbrace f\rbrace(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0) .$$

Proof for n = 2:

Laplace Transform of Higher-Order Derivatives

Theorem 5. Let $f(t), f'(t), \ldots, f^{(n-1)}(t)$ be continuous on $[0, \infty)$ and let $f^{(n)}(t)$ be piecewise continuous on $[0, \infty)$, with all these functions of exponential order α . Then, for $s > \alpha$,

(4)
$$\mathscr{L}\lbrace f^{(n)}\rbrace(s) = s^{n}\mathscr{L}\lbrace f\rbrace(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0) .$$

Illustrate for general *n*

Example 2 Using Theorem 4 and the fact that $\mathcal{L}\{\sin bt\}(s) = \frac{b}{s^2 + b^2}$, determine $\mathcal{L}\{\cos bt\}$.

Example 3 Prove the following identity for continuous functions f(t) (assuming the transforms exist):

(5)
$$\mathscr{L}\left\{\int_0^t f(\tau)d\tau\right\}(s) = \frac{1}{s}\mathscr{L}\left\{f(t)\right\}(s).$$

Use it to verify the solution to Example 2.

Derivatives of the Laplace Transform

Theorem 6. Let $F(s) = \mathcal{L}\{f\}(s)$ and assume f(t) is piecewise continuous on $[0, \infty)$ and of exponential order α . Then, for $s > \alpha$,

(6)
$$\mathcal{L}\left\{t^{n}f(t)\right\}(s) = (-1)^{n}\frac{d^{n}F}{ds^{n}}(s).$$

What does this mean?

Derivatives of the Laplace Transform

Theorem 6. Let $F(s) = \mathcal{L}\{f\}(s)$ and assume f(t) is piecewise continuous on $[0, \infty)$ and of exponential order α . Then, for $s > \alpha$,

(6)
$$\mathscr{L}\left\{t^{n}f(t)\right\}(s) = (-1)^{n} \frac{d^{n}F}{ds^{n}}(s) .$$

Proof:

Section 7.3: Properties of the Laplace Transform

Example 4 Determine $\mathcal{L}\{t\sin bt\}$.

TABLE 7.1 Brief Table of Laplace Transforms	
f(t)	$F(s) = \mathcal{L}\{f\}(s)$
1	$\frac{1}{s}$, $s > 0$
e^{at}	$\frac{1}{s-a}$, $s>a$
t^n , $n=1,2,\ldots$	$\frac{n!}{s^{n+1}}$, $s>0$
sin bt	$\frac{b}{s^2+b^2}, \qquad s>0$
$\cos bt$	$\frac{s}{s^2 + b^2}, \qquad s > 0$
$e^{at}t^n$, $n=1,2,\ldots$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$

TABLE 7.2 Properties of Laplace Transforms $\mathcal{L}\{f+g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\} \ .$ $\mathcal{L}\{cf\} = c\mathcal{L}\{f\} \quad \text{for any constant } c \ .$ $\mathcal{L}\{e^{at}f(t)\}(s) = \mathcal{L}\{f\}(s-a) \ .$ $\mathcal{L}\{f'\}(s) = s\mathcal{L}\{f\}(s) - f(0) \ .$ $\mathcal{L}\{f''\}(s) = s^2\mathcal{L}\{f\}(s) - sf(0) - f'(0) \ .$ $\mathcal{L}\{f''\}(s) = s^n\mathcal{L}\{f\}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0) \ .$ $\mathcal{L}\{t^nf(t)\}(s) = (-1)^n\frac{d^n}{ds^n} \big(\mathcal{L}\{f\}(s)\big) \ .$